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Summary

Eight-parental diallel cross and SSR molecular markers were used to determine the combining ability of common
wheat lines grown under well-watered (WW) and water-stress (WS) conditions. Analysis of variance of yield
indicated highly significant differences among the progenies. General combining ability (GCA) determined most
of the differences among the crosses. Specific combing ability (SCA) was also significant but less important. The
estimates of GCA effects indicated that one line was the best general combiner for grain yield under drought.
Nei’s genetic distance, measured using SSR markers, differed from 0.20 to 0.48 among the eight genotypes. The
correlation of Nei’s genetic distance with SCA for grain yield and heterosis ranged from 0.4 to 0.5. These results
indicate that the level of SCA and heterosis depends on the level of genetic diversity between the wheat genotypes
examined. Microsatellite markers were effective in predicting the mean and the variance of SCA in various cultivars
combinations. However, selection of crosses solely on microsatellite data would miss superior combinations.

Introduction

Common wheat (Triticum aestivum L.) is the major
source of calories and protein for a large segment of
the world population (Harlan, 1995), and is the most
important grain crop in Egypt. Wheat production in
many regions of the world is below average because of
adverse environmental conditions. A recent increase in
Egyptian wheat production is not sufficient to meet the
demands of a growing population. Water-stress issues
are increasing, especially in newly reclaimed lands,
sandy soils in some areas and shortages of water in the
land located at the tails of irrigation canals. In wheat
breeding programs, the choice of parents is the most
important step in the development of varieties adapted
to water-stress conditions.

The diallel technique developed by Griffing (1956)
lends itself to detailed genetic analysis after only one

generation. It can provide valuable knowledge about
the nature of genetic variances and the magnitude of
each of its components. Significant levels of heterosis
have been reported in a number of self-pollinated crops,
and were first observed in wheat by Freeman (1919).
The magnitude of the heterotic effect is determined by
the performance of both the parents and hybrids. Given
that parental performance will differ between environ-
ments, the magnitude of heterosis may also show sim-
ilar variation (El-Haddad, 1975; Uddin et al., 1992).
Briggle (1963) summarized the results of earlier stud-
ies which indicated the occurrence of significant mid
and high-parent heterosis for yield and various agro-
nomic traits.

One of the important applications of DNA markers
is the prediction of heterosis in hybrids. Evaluation of
hybrids for heterosis or combining ability in the field
is expensive and time-consuming (Sant et al., 1999).
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For this reason, other parameters such as pedigree
information, qualitative and quantitative traits (Smith
et al., 1990; Wang et al., 1992) and biochemical
data (Leonardi et al., 1991) are being used to study
heterosis. DNA markers have also been extensively
used to correlate genetic diversity and heterosis in
several crops such as maize (Smith et al., 1990;
Ajmone Marsan et al., 1998; Parentoni et al., 2001),
rice (Xiao et al., 1996; Zhang et al., 1994; Zhao et al.,
1999), oat (Moser & Lee, 1994; O’Donoughue et al.,
1994), barley (Melchinger et al., 1990) and chickpea
(Sant et al., 1999). In wheat, Martin et al. (1995) found
a significant association only between pedigree-based
genetic distance and heterosis only for kernel weight
and protein concentration. Barbosa-Neto et al. (1996)
investigated heterotic effects in 722 wheat hybrids
evaluated in replicated trails over several locations
and found that genetic distances based on restriction
fragment length polymorphism and coefficient of
parentage were weakly correlated with the heterotic
effect. Corbellini et al. (2002) estimated the corre-
lations between genetic similarities using molecular
markers with general and specific combing ability
effects for yield and related traits. The estimates were
in several cases statistically significant but too low to be
predictive.

Microsatellites or simple sequence repeats (SSRs)
are ubiquitous in eukaryotic genomes, and their
study has been greatly facilitated by recent advances
in PCR technology. A detailed genetic map of 279
microsatellite loci (Röder et al., 1998) and another map
of 53 microsatellite loci (Stephenson et al., 1998) have
been reported in common wheat. The latest version of
a genetic/physical map containing over 1400 loci and
primer (probe) details are available with GrainGenes
web site (http://wheat.pw.usda.gov). In diversity stud-
ies, SSRs were shown to provide significant informa-
tion on polymorphisms (Plaschke et al., 1995; Prasad
et al., 1999). In wheat, the possibility of introducing
hybrid seed production has been greatly enhanced
by the discovery of effective chemical hybridizing
agents. However, predicting F1 common wheat hybrid
performance using RFLPs and RAPDs to characterize
the parental lines is not effective (Perenzin et al.,
1998).

The present study was undertaken to identify
superior parental lines that could be used as sources
of drought tolerance in common wheat breeding
programs. We also examined the relationship of
genetic diversity measured using SSR markers with
the amount of specific combining ability and heterosis

under drought and irrigation conditions using eight
wheat genotypes.

Materials and methods

A diallel was made among eight common wheat (T.
aestivum L.) genotypes (Table 1). The F1 seed was
obtained by hand emasculation. The cross number and
pedigree of the F1 derived from the diallel is presented
in Table 1. Ten plants per plot of the parents and the
28 F1’s were grown in a randomized block design with
three replications at Nubaria Agricultural Research
Station, Agriculture Research Centre, Egypt, in 1996

Table 1. The cross number and pedigree of the 28
F1 hybrids derived from the diallel of eight common
wheat (Triticum aestivum L.) parental genotypes

No. Crosses (parent i × parent j)

1 Gemmiza1 × Giza164

2 Gemmiza1 × Giza167

3 Gemmiza1 × Sakha8

4 Gemmiza1 × Sids1

5 Gemmiza1 × Sids6

6 Gemmiza1 × Sakha69

7 Gemmiza1 × YecoraRojo

8 Giza164 × Giza167

9 Giza164 × Sakha69

10 Giza164 × Sakha8

11 Giza164 × Sids1

12 Giza164 × Sids6

13 Giza164 × YecoraRojo

14 Giza167 × Sakha69

15 Giza167 × Sakha8

16 Giza167 × Sids1

17 Giza167 × Sids6

18 Giza167 × YecoraRojo

19 Sakha69 × Sids6

20 Sakha69 × YecoraRojo

21 Sakha8 × Sakha69

22 Sakha8 × Sids6

23 Sakha8 × YecoraRojo

24 Sids1 × Sakha8

25 Sids1 × Sids6

26 Sids1 × Skha69

27 Sids1 × YecoraRojo

28 Sids6 × YecoraRojo
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and 1997 under water-stress (WS) and well-watered
(WW) conditions. The soil type was calcareous
sandy. Irrigation was applied at approximately
two-weekly intervals. The amount of applied irrigation
water was determined by measuring soil water de-
pletion before and after each irrigation. Soil moisture
depletion is the amount of water measured in mm
required to raise the soil-water content of the crop
root zone to field capacity (Husman et al., 1999). The
efficiency of surface irrigation at these experimental
sites was determined to be 60%. Under WS conditions,
a sowing irrigation of 70 mm was given, rainfall and
supplementary irrigation made up the total of 310
mm of applied water. The total amount of applied
irrigation water and rainfall for the WW treatment
during the growing season was 695 mm. The irrigation
interval was approximately every 12–15 days. Data
were collected on grain yield per plant (GYP) in grams
and mid-parent heterosis (MPH) was calculated.

The general and specific combining ability (GCA
and SCA, respectively) analysis was conducted fol-
lowing Griffing’s Model 1 Method 2 (Griffing, 1956).
All calculations were performed using the MSTAT-C
package (1991). Mid parent heterosis (MPH) was
computed as percent deviation from mean values of
the parents. DNA from 7-day-old seedlings of the
parental cultivars was extracted according to modified
CTAB procedure (Murray & Thompson, 1980). SSR
analysis was performed as described by Röder et al.
(1998). Reproducibility of amplification profiles
was tested on two randomly chosen cultivars; only
clear and stable bands were considered. Forty SSRs
developed and provided by Dr. P. Cregan, USDA-ARS,
Maryland, USA were used to create the molecular
marker data presented in Table 2. The SSR primer
information and chromosome location can be found
on the U.S. Wheat and Barley Scab Initiative web site
http://www.scabusa.org/pdfs/BARC SSRs 011101.xls.
Only SSR bands polymorphic in at least two genotypes
were considered in the analysis. Nei’s (1972) genetic
distance was calculated to measure genetic diversity
among the eight wheat genotypes using NTSY-pc
software, version 2.02 (Rohlf, 1993). Cluster analysis
of parental genotypes was based on Nei’s values using
the unweighted pair-group method with arithmetical
average (UPGMA) and the relationships among
cultivars were visualized using a dendogram. MPH
and SCA for agronomic and quantitative traits of the
28 hybrids under WW and WS were correlated with
the genetic diversity estimates based on SSR markers.

Table 2. Primers used for SSR analysis

Primer pair IDa MOTIF

BARC004 (TTA)15

BARC012 (TAA)28

BARC017 (TAA)12

BARC018 (TAA)20

BARC024 (TCA)10+(TAA)9

BARC042 (TTA)12

BARC048 (TATC)11

BARC052 (ATCT)5

BARC062 (TAGA)8

BARC065 (TAGA)9

BARC066 (TC)8(TAGA)5

BARC069 (TATC)15

BARC072 (CT)4(TCTA)8(TC)8

BARC074 (GA)13(GATA)7(GA)9

BARC076 (TATC)7

BARC077 (ATCT)6+18

BARC078 (TC)27(TATC)43

BARC079 (TAGA)10+(TC)9

BARC080 (GAA)12

BARC093 (TTC)10+3

BARC001 (TAA)8

BARC003 (CCT)17

BARC005 (TTA)5+8

BARC006 (TTA)24

BARC007 (TTC)6+3

BARC008 (TTA)15+11

BARC009 (TAA)3+3+(TTG)6

BARC010 (GAA)13

BARC011 (TAA)9+(TTA)12

BARC013 (TTC)5+3+2

BARC014 (TAA)18+12

BARC016 (TTG)9

BARC019 (TAA)18

BARC020 (TAA)21

BARC021 (TAA)19

BARC023 (TAA)9

BARC025 (TAA)22+(GAA)10

BARC026 (ATT)8

BARC027 (TAA)8

BARC028 (ATT)9

awww.scabusa.org/pdfs/BARC SSRs 011101.xls.
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Results

Analysis of variance of grain yield in the diallel
experiment indicated significant differences due
to genotypes under well-watered and water-stress
conditions. The genotype × water level and genotype
× year interactions were not significant. Grain yield of
the parental genotypes ranged from 17.8 to 28.8 grams
per plant under WW (Table 3). Yield reduction under
water-stress ranged from 18% for Sakha8 to 58% for
Sids6. The heterosis of grain yield per plant (GYP)
in F1 under WW and WS exceeded their mid-parents
in crosses numbered 11 and 19 of the 28 hybrids, re-
spectively (Figure 1). The highest significant heterosis
under WW was observed in crosses 18 (Giza167 ×
YecoraRojo) and 25 (Sids1 × Sids6). Highest heterosis
for GYP under WS was found in crosses 19 (Sakha69 ×
Sids6) and 14 (Giza167 × Sakha69). Highly negative
heterosis was observed in Sids1 × Sakha8 (cross 24)
and Gemmiza1 × Sakha69 (cross 6) under WW and
in Giza164 × Sids6 (cross 12) under WS (Figure 1).

Analysis of variance indicated that GCA and SCA
mean squares were highly significant for yield under
WW and WS conditions. The highest SCA for GYP
under WW was observed in crosses 13 (Giza164 ×
YecoraRojo), 22 (Sakha8 × Sids6) and 18 (Giza167 ×
YecoraRojo) (Figure 1). The highest SCA under WS
was estimated in crosses 18 (Giza167 × YecoraRojo)
and 16 (Giza167 × Sids1) (Figure 1). Highly negative
SCA was found in Gemmiza1 × Giza167 (cross 2)
under WW and in Sids1 × Sakha8 (cross 24) under
WS.

Estimation of GCA effects showed different
trends and a few cases were significant (Table 3).

Table 3. Mean parental yields (g/plant) over two years, standard devi-
ation (±S.D.) and general combining ability effects (GCA) for yield
under water-stress and well-watered conditions

Mean ± S.D. GCA

Genotype WS WW WS WW

Sakha8 20.52 ± 5.6 24.99 ± 3.4 0.230 0.368

Sakha69 20.14 ± 4.8 27.12 ± 2.1 −0.428 1.491∗

Sids1 21.45 ± 3.9 28.78 ± 2.2 1.433∗∗ 1.730∗∗

Sids6 8.59 ± 2.2 20.65 ± 3.0 −1.473∗∗ −4.551∗∗

Gemmiza1 20.93 ± 3.5 26.54 ± 3.3 0.755 0.297

YecoraRojo 15.61 ± 2.7 22.14 ± 2.8 1.151∗∗ −1.491∗

Giza164 15.84 ± 2.6 19.23 ± 2.7 0.658 2.309∗∗

Giza167 14.39 ± 2.9 17.79 ± 3.3 −3.026∗∗ −0.753

Giza164 gave the highest significant positive GCA
effect followed by Sids1 under WW, whereas Sids1
and YecoraRojo showed significant positive GCA
under WS (Table 3). All hybrids exhibited either
significant positive or negative SCA effects under
WW conditions. The crosses leading to positive SCA
effects resulted from combinations involving Sakha8,
Sakha69, Sids1, Gemmiza1 and Giza167, which also
showed positive GCA under WW (Table 3).

A total of 112 alleles were detected by the 40 mi-
crosatellites markers evaluated on the eight genotypes.
This represented an average of 2.8 alleles per locus
with a range of two to five alleles detected by a single
SSR locus. Nei’s genetic distance (GD) was measured
using the 112 polymorphic SSR alleles. The GD for
each genotype combination ranged from 0.20 to 0.48
(Figure 2). The relationship of heterosis and SCA for
GYP with genetic distance, measured using SSR mark-
ers, for the diallel is presented Table 4. The amount of
heterosis and SCA were significantly correlated with
Nei’s GD under WS and WW. Heterosis was also sig-
nificantly correlated with SCA under both WS and
WW.

Discussion

The present investigation was carried out to identify
parental common wheat genotypes and hybrids that
have good performance for grain yield under well-
watered and water-stress conditions. Approximately
55% of the area sown to wheat in the developing
countries is periodically affected by drought stress
(Trethowan et al., 2002). The development and culti-
vation of varieties that are tolerant to drought is the
most effective means of water shortage management
for wheat farmers. A diallel among eight cultivars was
made to study the general combing ability, heterosis

Table 4. Pearson correlations among Nei’ genetic distances (Nei’
GD), heterosis (H ) and specific combing ability (SCA ) for grain
yield per plant (GYP) under water-stress (WS) and well-watered
(WW) conditions

Nei’s GD H WS H WW SCA WS SCA WW

Nei’s GD 1.000

H WS 0.462∗∗ 1.000

H WW 0.503∗∗ 0.512∗∗ 1.000

SCA WS 0.417∗∗ 0.360∗ 0.687∗∗ 1.000

SCA WW 0.514∗∗ 0.689∗∗ 0.509∗∗ 0.596∗∗ 1.000

∗∗Correlation is significant at P = 0.01 (two-tailed).
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Figure 1. Percent heterosis and SCA of GYP (y-axis) in 28 crosses (x-axis) developed from eight genotypes of common wheat (T. aestivum
L.). Solid bars represent well-watered and white bars represent water-stress conditions.

and specific combing ability in relationship to
SSR diversity.

The diallel crosses revealed significant differences
in both the phenotypic value of the F1 hybrids and the
amount of heterosis among the genotype combinations.
The heterosis trend was positive for grain yield per
plant for many crosses under water-stress, indicating
that genetic gain from simple breeding should be ob-
tainable (Nanda et al., 1983). The results suggested that

grain yield per plant is controlled by loci with
both additive and non-additive gene effects under
both conditions, and support earlier findings (Sayed,
1978; Abul-Nass et al., 1986; Singh, 1988). This study
suggests that hybrids such as Sakha69 × Sids6 and
Giza167 × YecoraRojo provide a worthwhile degree
of heterosis under both stressed and well-watered
conditions. Combining ability has been shown to
be an inherited character (Satter et al., 1992). Our
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Figure 2. Dendrogram obtained from UPGMA cluster based on SSR data from the eight common wheat genotypes.

study demonstrated that, although the amount of
heterosis was independent of yield values, it was larger
in crosses between more distantly related parents
compared with closely related genotypes.

In autogamous cereals RFLPs have been success-
fully used to group genotypes (Peterson et al., 1994;
O’Donoughue et al., 1994; Zhang et al., 1995) but little
information is available about relationships between
genetic diversity and heterosis in wheat (Perenzin
et al., 1998). If a simple, efficient, inexpensive and
reliable method could be used to predict heterosis
before expensive field testing, much of the field work
associated with making crosses and field evaluation
would be eliminated and hybrid breeding programs
would be accelerated. For this reason, we focused on
the relationship between heterosis and F1 performance
under well-watered and stressed conditions with the
level of genetic diversity between the parents measured
by microsatellite markers. The use of SSR for DNA
fingerprinting and variety identification with emphasis
on common wheat was reviewed by Gupta and Varsh-
ney (2000). Our results show that SSRs are useful in
detecting a high level of polymorphism among wheat
cultivars. The utility of these markers for detection of
population differences agrees with previous reports in
other species (Liu & Wu, 1998; Xiong et al., 1998;
Sant et al., 1999; Agrama & Tuinstra, 2003).

The most important result obtained in the present
study is that the amount of heterosis under well-
watered and stress conditions, is positively correlated
with the genetic distance between the genotypes used
for the crosses. This is in disagreement with other
results reported in wheat using RFLPs where the sta-
tistically significant heterotic effects found for several

traits were only weakly correlated with the genetic
distances between parental cultivars (Barbosa-Neto
et al., 1996; Corbellini et al., 2002). Perenzin et al.
(1998) also found that genetic diversity of the parental
lines determined using RFLP and RAPD analyses
do not appear helpful for predicting F1 performance.
A significant association between pedigree-based
genetic distance and heterosis for wheat kernel weight
and protein concentration only was found (Martin
et al., 1995). However, high correlations between
heterosis and DNA-based genetic distance have been
reported in other crops (Smith et al., 1990; Melchinger
et al., 1990, 1994; Zhang et al., 1994). The high
correlations could depend on the higher levels of
heterosis reported (Corbellini et al., 2002). However,
while the correlation is significant, selection of crosses
solely on microsatellite data would miss superior
combinations. For instance, Giza167/YecoraRojo
showed much higher heterosis than Giza164/Sakha8,
even though the latter cross is much more diverse.

Heterosis is presumably caused by directionally
dominant loci and/or reduced homozygosity at delete-
rious recessive loci (Falconer, 1989). The present study
demonstrated that the degree of heterosis was signifi-
cantly correlated with genetic distance of the parental
cultivars, suggesting an effect of overall heterozygosity
on the amount of heterosis. The negative values in the
amount of heterosis observed in the genotype combi-
nations with small genetic distances might be caused
by individuals with similar genetic backgrounds.

The present study demonstrated that the amount
of heterosis and specific combing ability in common
wheat depends on the level of genetic diversity among
the genotypes used for the crosses. Even though
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seed of hybrid wheat is still relatively expensive,
microsatellite markers are also useful for predicting
the mean and the amount of heterosis in various
genotype combinations under both well-watered and
water-stressed conditions. The likelihood of a positive
return is reduced in marginal environments. Pure-line
systems are likely to be preferred for some time.
However, selection of crosses solely on microsatellite
data would miss the most superior combinations.
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